Endogenous melanocortin antagonist in fish: structure, brain mapping, and regulation by fasting of the goldfish agouti-related protein gene.

نویسندگان

  • José Miguel Cerdá-Reverter
  • Richard Ector Peter
چکیده

Agouti-related protein (AGRP) is a naturally occurring antagonist of melanocortin. In mammals, central AGRP expression is restricted to the arcuate nucleus in which it plays a key role in the control of energy balance by antagonizing melanocortin effects at melanocortin 4 receptors. In goldfish, melanocortin 4 receptor is profusely expressed within the main brain areas for the control of energy balance, and central administration of agonist or antagonist analogs inhibits or stimulates food intake, respectively. Here we demonstrate that the goldfish genome has a homologous gene to mammalian AGRP. Detailed brain mapping by in situ hybridization shows that AGRP is exclusively expressed in the ventrobasal hypothalamic lateral tuberal nucleus, the teleostean homolog of the arcuate nucleus. Fasting up-regulates its mRNA levels in the lateral tuberal nucleus. In the periphery, AGRP is expressed in several tissues including ovary, muscle, and ventral skin, suggesting that AGRP might regulate peripheral actions of melanocortin peptides. The results provide the first evidence for an endogenous melanocortin antagonist in nontetrapod species and suggest that hypothalamic overexpression during fasting might regulate the inhibitory effects of melanocortin peptides on food intake in goldfish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphodiesterase inhibitor-dependent inverse agonism of agouti-related protein on melanocortin 4 receptor in sea bass (Dicentrarchus labrax).

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor mainly expressed in the central nervous system of vertebrates. Activation of the MC4R leads to a decrease in food intake, whereas inactivating mutations are a genetic cause of obesity. The binding of agouti-related protein (AGRP) reduces not only agonist-stimulated cAMP production (competitive antagonist) but also the basal acti...

متن کامل

Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain.

Agouti-related protein (AGRP) is a recently discovered orexigenic neuropeptide that inhibits the binding and action of alpha-melanocyte-stimulating hormone derived from proopiomelanocortin (POMC) at the melanocortin 3 receptor (MC3R) and melanocortin 4 receptor (MC4R) and has been proposed to function primarily as an endogenous melanocortin antagonist. To better understand the interplay between...

متن کامل

PHOSPHODIESTERASE INHIBITOR-DEPENDENT INVERSE AGONISM OF AGOUTI-RELATED PROTEIN (AGRP) ON MELANOCORTIN 4 RECEPTOR IN SEA BASS (Dicentrarchus labrax)

The melanocortin 4 receptor (MC4R) is a G-protein coupled receptor mainly expressed in the central nervous system of vertebrates. Activation of the MC4R leads to a decrease in food intake, while inactivating mutations are a genetic cause of obesity. The binding of agoutirelated protein (AGRP) reduces agonist-stimulated cAMP production (competitive antagonist) but also the basal activity of the ...

متن کامل

Characterization of the sea bass melanocortin 5 receptor: a putative role in hepatic lipid metabolism.

The melanocortin 5 receptor (MC5R) plays a key role in the regulation of exocrine secretion in mammalian species. This receptor has also been characterized in some fish species but its function is unknown. We report the molecular and pharmacological characterization, as well as the tissue expression pattern, of sea bass MC5R. Cloning of five active alleles showing different levels of sensitivit...

متن کامل

Structural and molecular evolutionary analysis of Agouti and Agouti-related proteins.

Agouti (ASIP) and Agouti-related protein (AgRP) are endogenous antagonists of melanocortin receptors that play critical roles in the regulation of pigmentation and energy balance, respectively, and which arose from a common ancestral gene early in vertebrate evolution. The N-terminal domain of ASIP facilitates antagonism by binding to an accessory receptor, but here we show that the N-terminal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 144 10  شماره 

صفحات  -

تاریخ انتشار 2003